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ABSTRACT
Given an evolutionary optimization problem with many pos-
sible genotypes for each phenotype this study investigates if
the evolved genes for a given phenotype are more robust to
point mutation than randomly sampled genes for the same
phenotype. This question is addressed using a cellular rep-
resentation for polyominos in the plane. The evolutionary
computation system optimizes for shapes which pack well
onto the surface of a torus when dropped at random. For
the majority of the evolved phenotypes the evolved genes
for a given shape proved to be significantly more robust to
point mutation than those sampled at random for that same
shape. A few evolved genotypes, however, were not signif-
icantly more robust than those sampled at random and in
some cases were less robust. These observations are placed
in the context of the fitness landscape for the representa-
tion.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

General Terms
Design

Keywords
Cellular Representation, Robustness, Evolutionary Compu-
tation

1. INTRODUCTION AND BACKGROUND
One of the advantages claimed for evolved systems is that

they are more robust. One example of this is the energy
landscape of proteins. Evolved proteins fold on energy land-
scapes that resemble huge funnels [1]. Randomly generated
sequences of amino acids typically have energy landscapes
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with many shallow energy minima. This suggests that the
natural proteins, produced by evolution, are a very special
subset of the possible proteins. The specialness manifests
itself not only in the ability to perform various enzymatic
tasks but in the way that the protein is able to correctly
fold to perform its job with relative ease, when compared
to the space of all sequences of amino acids. This special-
ness also appears in evolved 2-D models of protein folding.
Computer simulations of simplified protein folding using a 2-
dimensional lattice model have shown that in a very specific
environment “optimal” proteins found by an evolutionary al-
gorithm are more robust to mutation than those found by a
random walk [6]. This is a specific instance of a phenomenon
of general interest: the way the robustness of structures de-
pends on the methods used to create them.
The study here continues in a new direction previous work

on robustness in functional optimization [5]. In the previous
study evolutionary algorithms using tournament selection
were compared to the great deluge algorithm [2], a stochas-
tic hill-climber, and a random walk. For several functional
optimization problems the tournament selection algorithm
was found to produce more robust solutions than all the
other algorithms except the great deluge. The great del-
uge was often, but not always beaten by the tournament
selection algorithm. The great deluge also exhibited a huge
variation in performance; its performance sometimes failed
to be significantly different from that of the evolutionary al-
gorithm because of a confidence interval of enormous width.
This study evaluates the robustness of evolved structures

that arise under a representation with a many-one genotype
to phenotype mapping. The number of different genotypes
that encode a given phenotype that appears during evolution
is combinatorially large and so provides a statistical universe
for comparison with the genes that arise during evolution.
The structures being evolved are shapes made of contiguous
unit squares joined face to face. The encoding is a type
of cellular encoding, following the clever idea of Frederic
Gruau [3] in which direction for constructing a structure,
rather than a direct specification of the structure, forms the
representation.

The Question
This apparent ability of an evolutionary algorithm to select
a more robust solution when robustness is not directly a
fitness criteria has the potential not only to elucidate the
behavior of evolution but also to aid engineers and computer
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scientists who tackle problems where robustness may be an
important factor. In this study the term “robustness” is
used to describe the probability a point mutation will fail
to reduce the fitness of a solution. The type of robustness
studied here is formally defined subsequently. In this paper
we attempt to address the following question:
Question: In the presence of a many-one genotype to phe-
notype mapping do evolutionary algorithms find genes that
are more robust than average among all genes coding for a
given phenotype, assuming that robustness of the solution
is not directly part of the fitness evaluation?
This study only addresses the preceding question in the

framework of a single evolutionary computation problem,
but hopefully gives an experimental design that can be used
easily to test other problems.

Overview of Experimental Approach
The structures used in this study are polyominos. A poly-
omino is polygon formed from a number of unit squares
joined together edge-to-edge, so that a full edge of each
square is in contact when two squares are joined. Exam-
ples of polyominos are shown in Figure 1 while the domi-
nant evolved polyominos evolved in this study are shown in
Figure 4.
Populations of polyominos are evolved using a stochastic

tiling criterion to evaluate fitness. Many copies of each poly-
omino in a population are placed over random points on a
toroidal grid in an equitable order. If the space beneath a
polyomino is completely open then it drops onto the grid,
otherwise it fails to drop. Polyominos are dropped one at a
time, occupying more and more of the space on the gird as
fitness evaluation progresses. The fraction of the grid occu-
pied by instances of the polyomino derived from a given gene
is the fitness of that gene. This is a noisy fitness function
and so a large toroidal grid is used to reduce the randomness
of fitness evaluation.
In a population of evolved polyominos there are typically

a small number of shapes that occur by the end of an evo-
lutionary run. We call these the dominant shapes for that
run. Since the population size if fixed this means that each
dominant shape is encoded by many genes in the population.
Some of the genes generating the same shape are identical,
some are not. In addition, distinct runs sometimes share
dominant shapes. For a given dominant shape we collect
together all the evolved genes that yield that shape withing
a single population (evolutionary run). These are the set of
evolved genes for the shape in that population.
A key feature of robustness evaluation is the ability to

sample genes for a given shape. We do this with an inverse
gene creator. Given a shape this code fills in a set of in-
structions, making a uniform random choice in each step,
that generates the shape. It first creates a gene that ex-
actly generates the shape and then pads it, in a uniform
random fashion, with additional unexecutable instructions.
The genes generated in this fashion form a sample of the
genes that can generate a given shape, enabling the robust-
ness comparison with evolved genes.
The remainder of the paper is organized as follows. Sec-

tion 2 specifies the representation for polyominos, the evo-
lutionary algorithm, and the inverse gene creator as well as
defining exactly the type of robustness the experiments test
for, Section 3 specifies the experiments performed and gives
the experimental results. Section 4 discusses and explains

the results. Section 5 gives future directions for continuing
the investigation of robustness.

2. MODEL SPECIFICATIONS
The representation used for polyominos is a simple list of

integers. These form a linear gene which may be subjected
to crossover and mutation in the usual fashion for string
representations. The integers encode commands for how to
grow the polyomino. This highlights an advantage of cellu-
lar representation. If we were to cross over two polyominos
directly it would be challenging to produce a contiguous re-
sulting shape. Probably some form of repair operator would
be required, at a minimum. The list of directions is a simple
string that can be plugged into fairly generic evolution code.
While running the development algorithm that transforms
this string into a polyomino some of the commands will not
be executable, forming a type of “junk DNA”, but this is
simple and transparent compared to the repair operators
that might be required.

Gene Expression
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Int Binary Cell No. Direction
4 00000100 1%1=0+1=1 00=up
13 00001101 3%2=1+1=2 01=right
38 00100110 9%3=0+1=1 10=left
21 00010101 5%4=1+1=2 01=right
31 00011111 7%4=3+1=4 11=down

Figure 1: An example of gene expression for the
gene 4,13,38,21,31. Parsing this gene yields the se-
quence of developmental steps shown above.

Gene expression in this context, is the process that trans-
forms the gene - a string of instructions - into a polyomino.
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We will call the squares of our polyominos cells. The ex-
pression of each polyomino starts with a single square or
cell, cell number zero. The gene then specifies how to grow
additional cells onto the sides of already existing cells. Each
gene is an array of 8-bit positive integers. Each of these
integers is interpreted as a list of growth instructions. Each
instruction specifies a cell number and a direction. A gene
is expressed on a 2-dimensional grid by executing the list
of instructions in sequential order along the gene. The last
two bits of each integer are used to specify the direction to
grow in (00 - up, 01 - right, 10 - left, 11 down). The remain-
ing six bits are used modulo the number of cells currently
expressed, plus one. The six bits (mod n) + 1 pick which
of the n currently expressed cells, 1, 2, . . . , n is the start-
ing point for the attempt to grow in the direction given by
the two least significant bits. If an instruction tells a cell
to grow into an already existing cell then the instruction in
not executable and is ignored. Cell numbers are assigned
sequentially based on the order in which the cells appeared.
Examine the length five gene: (4,13,38,21,31). A visual rep-
resentation of the development of this gene is given in Figure
1. The first instruction starts at cell 1 and generates a sec-
ond cell upward one grid square. The second instruction
starts at cell 2 and grows to the right expressing cell 3. The
third instruction starts at cell 1 and grows to the left ex-
pressing cell 4. The fourth instruction starts at cell 2 and
attempts to grows to the right, resulting in a failure to ex-
ecute the instruction. The final instruction starts at cell 4
and grows down creating the fifth and final cell.

Fitness Evaluation
The fitness of a shape is determined by how well it stochas-
tically packs onto a toroidal grid. The population of genes is
shuffled. The fitness evaluation routine then cycles through
the population of genes and sequentially attempts to place
shapes onto the toroidal grid. A pair of (x,y) coordinates are
chosen at random to be the lower left corner of the shape on
the grid. If the shape doesn’t land in a position where every
square it would occupy is empty then nothing changes, oth-
erwise it occupies those grid squares. This process continues
until at least half of the area of the board is covered. Shapes
are assigned fitness values equal to the number of squares
on the board that instances of them cover.

The Evolutionary Algorithm

Table 1: Evolutionary Algorithm
01. Initialize Population of Shapes
02. Do g Times
03. Evaluate fitness by stochastic packing
04. Shuffle the population into size 4 tournaments.
05. The two most fit members of each tournament copy

over the two least fit.
06. Copies undergo two point crossover
07. Each copy undergoes single point mutation
08. Report results

The evolutionary algorithm used is given in Table 1. It
uses single tournament selection algorithm with tournament
size 4. The parameters used for population size and other

similar details are listed in Table 3 in Section 3. The sin-
gle point mutation used is replacement of the integer at one
randomly selected position with another integer chosen uni-
formly at random from all eight bit integers.

Random Inverse Gene Creation

Table 2: Random Inverse Gene Creation Algorithm

01. Initialize a length l gene vector with g growth
instructions and f failures

02. Pick a cell at random from the shape to be the
initial cell

03. For each list entry L
04. If L is a growth instruction
05. Pick an expressed cell at random
06. Pick an unexpressed expressible neighboring

cell at random
07. Write a growth instruction
08. If L is a failure instruction
09. Pick an expressed cell at random
10. Pick a neighboring expressed cell
11. Write an unexecutable instruction

The algorithm for randomly sampling genes that create
a given shape is called the random inverse gene creator. It
is given in Table 2. It takes a given shape as input and
randomly samples the space of all genes which can generate
that shape. The number of executable instructions g and
failures f can be computed from the length k of the gene
and the number of cells c in the shape using the following
obvious relation. First, c = g+ 1 because the first cell is, in
some sense, free. Second, k = g + f .
The algorithm first randomly assigns positions in the gene

for failures (instructions that cannot be executed). A square
is picked uniformly at random from the shape to be the ini-
tial square for the shape generated by the gene, cell zero
relative to the gene’s encoding of the shape. For each po-
sition in the gene the algorithm generates either a growth
instruction or a failure, as specified by the positions of the
failures. Note that a failure can be anywhere except the first
instruction and, subject to that limit, they are placed at ran-
dom. When generating a growth instruction the algorithm
randomly picks an unexpressed square of the shape which
is adjacent to at least one expressed square. If the square
picked is adjacent to more than one expressed square then
the square it grows from is chosen at random. A growth
instruction is then generated that causes the unexpressed
square picked to be grown from the expressed square picked.
See Figure 2 for an example. To generate a failure an ex-
pressed square is picked at random, and then a neighbor-
ing expressed square is picked. Notice that after the first
instruction all expressed squares are adjacent to expressed
squares. A failure instruction is then generated by having
the first expressed attempt to grow a new square into the
second. See Figure 3 for an example.

Analysis
If we wish to test the hypothesis that evolved genes for a
shape are, on average, more robust that genes picked at
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Figure 2: Example of generating a growth instruc-
tion. Displayed squares represent squares in the fi-
nal shape. Grey squares represent expressed squares
in the shape. Hatch-marked squares represent pos-
sible choices of squares to grow into. In this example
a grown instruction is generated that causes square
two to grow from square 1.

random from those that generate the shape then we need a
careful definition of robustness.

Definition 2.1. Robustness The robustness of a gene
is the probability that a single mutation will fail to transform
the shape the gene expresses.

Note that as robustness is a probability, we have

0 ≤ Robustness ≤ 1.
A robustness of 1 indicates a gene that cannot have the
shape it encodes changed by point mutation while a robust-
ness of zero indicates a shape that is changed by any possi-
ble point mutation. Recall that a point mutation consists of
changing one of the eight bit integers in a gene at random
to another eight bit integer selected uniformly at random.
The robustness for a gene is approximated by perform-

ing repeated point mutation trials on the gene. A trial was
considered a success if a point mutation did not change the
expressed shape of the gene, making point mutations a form
of Bernoulli trial[4]. Bernoulli trials are experiments with
two possible outcomes, like flipping a coin. The number of
successes in a collection of Bernoulli trials follows the bino-
mial distribution[4] and, for large numbers of trials, can be
modeled with the normal distribution using the de Moivre-
Laplace Theorem[4] which states the aymptotic of a bino-
mial distribution is a normal distribution. For the genes
encoding each dominant shape in the final population of
each evolutionary run we calculate the combined number of
successes for the evolved genes that encode the shape and
compare it with the combined number of successes of n ran-
domly sampled genes which encode the shape.
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Figure 3: Example of generating a failure instruc-
tion. Displayed squares represent squares in the
final shape. Grey squares represent expressed
squares. The white squares represent the two
squares involved in the failure instruction. The
hatch-marked squares represent possible choices for
the second square in the failure instruction. The
failure chosen attempts to grow from square 2 to
square 1.

3. EXPERIMENTS
A set of thirty evolutionary runs was performed. The

parameters for the evolutionary algorithm and the robust-
ness assessment used in this study are given in Table 3. The
dominance threshold is the number of genes, minimum, that
must encode a shape for the shape to be considered domi-
nant. Note that dominant does not mean majority, rather
it means “apparently surviving”. Point mutations sampled
are the number of point mutation trials used to approximate
the robustness of a single evolved or synthetic gene. Number
of synthetic gene samples is the number of synthetic genes
generated when assessing the comparative robustness of an
evolved gene for a given shape. The other parameters are
standard evolutionary algorithm parameters.
The statistical test used to determine if the evolved genes

within a single population for a given shape were signifi-
cantly more robust than randomly sampled genes for that
shape was a z-statistic for the comparison of the probabil-
ity of success in two collections of Bernoulli trials [4], page
335. For all the evolved genes in a given evolutionary run
that produced a dominant shape 1000 point mutations were
sampled and the number x that failed to modify the shape
as well as the number of point mutations n attempted were
recorded. For each of 200 sample genes generated with the
random inverse gene creation algorithm the number of point
mutations y that failed to change the shape of the gene
and the total number of point mutations m attempted were
recorded. The z-statistic used to compare these two collec-
tions of Bernoulli trials is:
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Zα/2 =
x
n
− y

m√
( x+y

n+m)(1− x+y
n+m)(n+m)

nm

(1)

Parameter Value
Evolutionary algorithm

Number of evolutionary runs 30
Population size (p) 60
Gene size 60
Tournament size (t) 4
Number of generations (g) 500
Toroidal grid width 600
Toroidal grid length 600
Probability of a point Mut. 0.200

Robustness Assessment
Dominance threshold 4
Point mutations sampled 1000
Number of random genes sampled 200

Table 3: Evolutionary algorithm and robustness as-
sessment parameters.

In the course of thirty evolutionary runs, forty dominant
shapes were observed. Twenty-eight of them being unique,
others occurred in multiple, distinct runs. A shape is consid-
ered to be a dominant shape if greater than 5% of the genes
(at least 4 genes) in the population code for that shape. Af-
ter performing a statistical analysis summarized in Table 4
it was found that thirty-seven of the dominant shapes were
expressed by evolved genes which were significantly more
robust to point mutation than randomly sampled genes for
the same shapes. Two of the dominant shapes were ex-
pressed by evolved genes which were significantly less ro-
bust to point mutation than randomly sampled genes (N:22,
AA:14). These same two shapes also were expressed by
evolved genes, in different runs, that were significantly more
robust to point mutation than randomly sampled genes.
One shape was also expressed by evolved genes which were
not significantly more or less robust than the randomly sam-
pled genes (H:11). The shapes H and S, 5x4 and 4x4 squares
respectively, appeared most frequently. The 4x5 square, on
the other hand, only appeared once.

4. DISCUSSION AND CONCLUSIONS

The cellular encoding for shapes used in this study was
chosen to give a many-one mapping from genes to shapes
thus creating room for diverse encodings of a given shape,
both robust and non-robust. The hypothesis that evolu-
tion usually finds genes that exhibit above-average robust-
ness is strongly confirmed by the experiments with 37 of 40
dominant shapes having significantly more robust dominant
shapes. This assessment uses the 95% confidence criterion
with a z-value of 1.96 but the significant z-values in Table
4 range from 2.24 to 32.64. The former represents modest

Shape Shape Shape Count in
Type Class ID Population Z-value
A 5x5 0 32 10.30
B 5x5 1 22 10.71
C 5x5 33 50 2.98
D 5x5 17,36 57,4 17.45, 2.46
E 5x5 34 4 3.60
F 5x5 35 50 4.62
G 5x4 12 52 4.23
H 5x4 2,11, 60,54, 14.03, 0.18

31,32 59,54 2.71, 18.96
I 4x6 13 58 4.07
J 4x6 27 20 9.53
K 4x6 32 56 20.12
L 4x5 3 54 19.92
M 4x5 20 32 8.72
N 4x5 19,22 17,56 8.03, -11.15
O 4x5 18,26 6,35 2.24, 15.29
P 4x5 10 56 11.25
Q 4x5 28 56 20.67
R 4x5 29 4 2.59
S 4x4 6,9, 56,55, 32.64, 8.14,

23,37 57,56 7.33, 8.95
T 3x5 4 55 8.25
U 6x4 7,15 55, 49 4.86, 10.31
V 6x4 39 25 13.89
W 6x4 16 6 6.58
X 6x4 24,38 56, 30 20.13, 13.58
Y 6x4 21 55 11.82
Z 6x4 25 57 4.44
AA 6x3 5,14 56, 57 3.17, -6.96
AB 6x3 8 56 14.11

Table 4: For each shape class this table gives the
following information. The shape type indexes the
depiction of the shapes in Figure 4. The shape class
is the size of bounding rectangle for the shape. The
shape ID is a unique identifier assigned each time
a shape is a dominant shape in a population. Pop-
ulation count is the number of occurrences of the
shape in a 60 member population. The Z-value is
the Gaussian statistic for significance of relative ro-
bustness.

but real significance while the latter corresponding to an ex-
traordinary level of robustness. One of the dominant shapes
did not have significantly different robustness from sampled
genes at the resolution of this study. Intriguingly two domi-
nant shapes had representations that were significantly less
robust than the sampled genes.
These two peculiar cases are made even more interest-

ing by the fact that one of them, Shape N in Figure 4 was
dominant in two populations. In the first it has a genetic
encoding with robustness statistic z = 8.03 indicating sub-
stantially above-average robustness. In the second the value
is z = −11.15. This suggests, first of all, that shape N, a
5×4 rectangle with its lower left corner missing, has at least
two very different encodings that can take over an evolving
population. Second it suggests that the fitness of a shape can
be substantially independent of the robustness of its genetic
encoding in the evolutionary computation system presented
here.
Putting this result into the metaphor of fitness landscapes

the algorithm has located two distinct hills for shape N one
of which is broader and flatter than the other. This result
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Figure 4: Each of the twenty-eight dominant shapes.
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Figure 5: The number of distinct shapes in the pop-
ulation as a function of evolutionary time for a typ-
ical run (trial 5).
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Figure 6: The average size of the shapes in the popu-
lation as a function of evolutionary time for a typical
run (trial 5). The dominant shape here was a 4x4
square with shape ID 6.

is related to the results reported by Chris Adami’s group
[7] on a more complex representation. Their paper coins
the term “survival of the flattest” to describe the tendency
of evolution to select broad hills in the presence of a high
mutation rate. In the case of ShapeN there is not a trade-off
of fitness for genetic stability but rather two different peaks
with exactly the same fitness (shape determines fitness in
this system) and clearly different levels of genetic stability.
We can conclude that in this evolutionary system high

levels of robustness are likely but not certain. It is likely
that there a founder effects that explain the wide scatter of
robustnesses. A question that this leaves open is the ability
of a good shape to discover more robust representations as
evolution continues. The results for shape N suggest that
some encodings of a good shape have no high-fitness muta-
tional path to higher robustness.
We conjecture that the source of kind of robustness in

evolutionary computation reported here is durability against
disruption by the variation operators. As can be seen in the
example present in Figure 8 there is substantial pressure to
conform to fit in with the dominant shape within an ecol-

ogy. Suppose that an ecology arrives at a point in evolution
where most of the genes encode the same shape. At this
point the e only remaining source of selection pressure is for
the ability to not change the shape encoded by a gene when
it is subjected subjected to crossover and mutation. Forms
that are more robust in the sense of retaining their shape
when mutated or crossed over will have a higher effective re-
productive rate in spite of having an identical (shape based)
fitness.
Examining Figure 4 it is clear that the fitness function

favors compact shapes. The most compact shape possible
is a square and squares like shape S or near squares like
shapes A-F are common. Rectangles with similar length
and height, with or without a missing corner, are also also
common. Shapes Y and Z suggest that near-hexagons are
also possible. All the shapes observed as dominant shapes
are arguably near shapes that tile the plane well.
This favoring of near tiling shapes answers an obvious

question about the trajectory of evolution in this system.
Shapes can either cooperate (nearly tile) or fail to cooper-
ate (attempt to block other shapes fall). If the shapes were
attempting to block other shapes fall then one would expect
limbs, long projections. This sort of projection is common in
initial populations, an example of which is shown in Figure
7. The reason for this is probably relatively small popula-
tion size. By the end of 500 generations of evolution the
population is highly inbred. As a result effective strategies
for blocking other genes would block other instances of the
shape a given gene encoded.

Figure 7: A picture of shapes as they dropped
during fitness evaluation of generation zero in a
reduced-size world.

It is interesting to compare Figure 7, a starting popula-
tion, with Figure 8, a final population. Both these figures
are drawn from preliminary studies on a smaller toroidal grid
than the runs used to study robustness. Notice that in the
final population far less diversity of shapes. Most genes code
for a 4x4 square with three non-dominant shapes encoding
for squiggly things. Recall that each gene is permitted to
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drop multiple copies of its shape during fitness evaluation.
The fitness function cycles through the population in a ran-
dom order. The number of distinct shapes and average size
of shapes as function of evolutionary time for evolutionary
run number 5 are given in Figures 5 and 6. This run is typ-
ical of the behavior of all thirty runs. The average size of
shapes drops sharply at the beginning of evolution as does
the number of distinct shapes. This suggests that the need
to occupy space with a single polyomino is not the driving
force of evolution in this system. Rather, co-existence of
instances of the polyominos derived from a particular gene
seem to be the order of the day.

Figure 8: A picture of shapes as they dropped dur-
ing fitness evaluation of generation 499 in a reduced-
size world.

5. FUTURE WORK
The basic system implemented for a particular cellular

encoding of shapes in this study can be repeated for other
representations and fitness functions. The ability of evolu-
tion to locate robust solutions is an important feature of
evolutionary algorithms that requires careful quantitation.
In addition to the type of robustness treated here, robustness
to mutation, robustness against variation in fitness criterion
should also be studied. In a system that samples fitness cases
such an assumption of robustness is implicit. Succeeding
on those fitness cases encountered in evolution is supposed
to produce general solutions. Quantitating robustness thus
might improve the theory of allocation of fitness trials.
Focusing more narrowly on the shape system several areas

for additional study are available. Adopt the definition that
cooperation between shapes is represented by shapes that
almost tile and failure to cooperate by shapes that block
tiling and waste space. Would increasing the population
size or restricting mating generate less cooperative shape?
This notion could be explored further by designating “preda-
tor” and “prey” shapes with different fitness criteria. Prey
keep the fitness criteria used in the current study. Predators
are less common and are dropped first. Their fitness is the

number of instances of the prey shapes that they prevent
from dropping. We conjecture this would create predator
shapes that block far more space than they occupy, relative
to compact “prey” shapes.
The tentative conclusion from Section 4 that some genetic

encodings for high fitness shapes have no mutational path to
higher robustness can be checked. The software already de-
veloped for this work samples the point mutants of a gene to
check the probability a point mutation will change a shape.
This software can be modified to sample the neutral fitness
mutation graph of a gene. This graph has some subset of the
gene space as its vertices. The edges of the graph are pairs
of genes that (i) encode the same shape and (ii) differ by
a point mutation. Starting with a given gene, point muta-
tions that do not change the shape are added to the graph.
These, in turn, are also checked and their neighbors incorpo-
rated. The graph has potentially immense size. Sampling it
will provide evidence about fitness-neutral paths to higher
robustness as well as the “robustness landscape” near the
original gene.
Finally, the ability of evolution to discover robustness in

this system can be surveyed for different parameters of the
evolutionary algorithm in the usual fashion. This would
consist of sensitivity studies to the type of crossover, rate
and type of mutation, population size, and other factors
such as population structure.

6. REFERENCES
[1] C. H. C, M. P. Eastwood, M. Prentiss,

Z. Luthey-Schulten, and P. G. Wolynes. Folding
funnels: the key to robust protein structure prediction.
Journal of Computational Chemistry, 23:138–146, 2002.

[2] G. Dueck. New optimization heuristics: The great
deluge algorithm and the record-to-record travel.
Journal of Computational Physics, 90:86–92, 1993.

[3] F. Gruau. Automatic definition of modular neural
networks. Adaptive Behaviour, 3(2):151–183, 1995.

[4] R. J. Larsen and M. L. Marx. Introduction to
mathematical statistics and its applications. Prentice
Hall, Engelwood Cliffs, New Jersey, 1981.

[5] J. Schonfeld and D. Ashlock. Comparison of robustness
of solutions located by evolutionary computation and
other search algorithms. In Proceedings of the 2004
Congress on Evolutionary Computation, volume 1,
pages 250–257, Piscataway, New Jersy, 2004. IEEE
Press.

[6] D. Taverna and R. A. Goldstein. The distribution of
structures in evolving protein populations.
Biopolymers, 53:1–8, 2000.

[7] C. O. Wilke, J. L. Wang, C. Ofria, R. E. Lenski, and
C. Adami. Evolution of digital organisms survival of
the flattest. Nature, 412:331–333, 2001.

26


